Kettenlinie: Unterschied zwischen den Versionen

Zeile 1: Zeile 1:
Eine Kette, die an den Enden befestigt wird und dazwischen herunterhängt, nimmt unabhängig von der Masse pro Länge eine bestimmte Form an. Diese sogenannte Kettenlinie, die eigentlich den Verlauf eines ideal biegsamen, linienförmigen Seils beschreibt, hängt von der Lage der Aufhängepunkte und der Länge der Kette ab, nicht jedoch von ihrer [[Masse]] pro Längeneinheit (''μ'').
+
Eine Kette, die an den Enden befestigt wird und dazwischen herunterhängt, nimmt eine bestimmte Form an. Diese sogenannte Kettenlinie, die eigentlich den Verlauf eines ideal biegsamen, linienförmigen Seils beschreibt, hängt von der Lage der Aufhängepunkte und der Länge der Kette ab, nicht jedoch von ihrer [[Masse]] pro Längeneinheit (''μ'').
   
Das Problem der Kettenlinie wurde von ''Gottfried Wilhelm Leibnitz'', ''Christiaan Huygens'' und ''Johann Bernoulli'' im Jahr 1690 gelöst. Diese Lösung enthielt allerdings keine Herleitung. Johann Bernoulli wird erst in seinen Lektionen für L'Hospital expliziter. ''Galileo Galiei'', der sich schon früher mit diesem Problem beschäftig hat, glaubte, dass die Kettenlinie eine Parabel sei. Eine Parabel ergäbe sich aber nur, wenn die Masse der Kette proportional zur Horizontaldistanz wäre.
+
Das Problem der Kettenlinie wurde von ''Gottfried Wilhelm Leibnitz'', ''Christiaan Huygens'' und ''Johann Bernoulli'' im Jahr 1690 gelöst. Diese Lösung enthielt allerdings keine Herleitung. Johann Bernoulli wird erst in seinen Lektionen für L'Hospital expliziter. ''Galileo Galiei'', der sich schon früher mit diesem Problem beschäftig hat, glaubte, dass die Kettenlinie eine Parabel sei. Eine Parabel ergibt sich aber nur dann, wenn die Masse der Kette proportional zur Horizontaldistanz ist.
   
 
==klassische Herleitung==
 
==klassische Herleitung==
Zeile 19: Zeile 19:
 
:<math>F_G = \mu ds g </math>
 
:<math>F_G = \mu ds g </math>
   
Nun führen wird für die Vertikalkomponente der Kräfte eine laufende Kraftvariable ''F<sub>v</sub>(''x'') ein und verwenden für die konstant bleibende Horizontalkomponente den Parameter F<sub>h</sub>. Damit wird die Gleichgewichtsbedingung in ''y''-Richtung zu
+
Nun führen wird für die Vertikalkomponente der Kräfte eine laufende Kraftvariable ''F<sub>v</sub>''(''x'') ein und verwenden für die konstant bleibende Horizontalkomponente den Parameter F<sub>h</sub>. Damit wird die Gleichgewichtsbedingung in ''y''-Richtung zu
   
 
:<math>dF_v = \mu g ds = \mu g \sqrt{dx^2 + dy^2} = \mu g dx \sqrt{1 + \frac {dy^2} {dx^2}}</math>
 
:<math>dF_v = \mu g ds = \mu g \sqrt{dx^2 + dy^2} = \mu g dx \sqrt{1 + \frac {dy^2} {dx^2}}</math>
Zeile 25: Zeile 25:
 
oder nach einer Division mit ''dx'' und der üblichen Bezeichnung für die Ableitung nach einer Ortsvariablen
 
oder nach einer Division mit ''dx'' und der üblichen Bezeichnung für die Ableitung nach einer Ortsvariablen
   
:<math>F_v' = \mu g dx \sqrt{1 + (y')^2}</math>
+
:<math>\frac {dF_v}{dx} = F_v^' = \mu g \sqrt{1 + (y^')^2}</math>
   
 
Weil das [[Seil]] oder die Kette ideal biegsam ist, muss die Kraft auf einen beliebigen Querschnitt immer normal zur Schnittebene stehen. Dies führt zu folgender Zusatzbedingung
 
Weil das [[Seil]] oder die Kette ideal biegsam ist, muss die Kraft auf einen beliebigen Querschnitt immer normal zur Schnittebene stehen. Dies führt zu folgender Zusatzbedingung
   
:<math>\frac {F_v}{F_h} = \frac {dy}{dx} = y'</math>
+
:<math>\frac {F_v}{F_h} = \frac {dy}{dx} = y^'</math>
   
Leitet man diese Bedingung noch einmal nach der Ortsvariable ''x'' ab, folgt nach dem Einsetzen in die ''y''-Gleichgewichtsbedingung die Differentialgleichung für die ideale Kette oder das ideale Seil
+
Leitet man diese Bedingung noch einmal nach der Ortsvariable ''x'' ab, folgt daraus nach dem Einsetzen in die ''y''-Gleichgewichtsbedingung die Differentialgleichung für die Kettenlinie
   
:<math>y'' = \frac { \mu g }{F_h}\sqrt{1 + (y')^2} </math>
+
:<math>y^{''} = \frac { \mu g }{F_h}\sqrt{1 + (y^')^2} </math>
   
 
==systemdynamische Herleitung==
 
==systemdynamische Herleitung==
Durch das ideale Seil fliesst ein konstanter Strom der ''x''-Impulskomponente (''I<sub>px</sub>'') gegen das Koordinatensystem. Der ''y''-Impuls fliesst von beiden Befestungsstellen ins Seil hinein und geht entsprechend der Massenbelegung ans [[Gravitationsfeld]] weg. Für die Änderung der Stromstärke des ''y''Impulsstroms längs des Seils gilt
+
Durch das ideale Seil fliesst ein konstanter ''x''-Impulsstrom gegen die ''x''-Achse (''I<sub>px</sub>'' < 0). Zusätzlich fliesst der ''y''-Impuls von beiden Befestungsstellen ins Seil hinein und geht entsprechend der Massenbelegung ans [[Gravitationsfeld]] weg. Für die Änderung der Stromstärke des ''y''-Impulsstroms längs des Seils gilt
   
 
:<math>dI_{py} = -\mu g ds = -\mu g \sqrt{dx^2 + dy^2}</math>
 
:<math>dI_{py} = -\mu g ds = -\mu g \sqrt{dx^2 + dy^2}</math>
Zeile 42: Zeile 42:
 
oder nach der gleichen Umformung wie oben
 
oder nach der gleichen Umformung wie oben
   
:<math>I_{py}' = -\mu g \sqrt{1 + (y')^2}</math>
+
:<math>I_{py}^' = -\mu g \sqrt{1 + (y')^2}</math>
   
Weil das Seil ideal weich bezüglich [[Biegung]] ist, kann es keinen [[Drehimpuls]] transportieren. Folglich dürfen keine [[Drehimpulsquelle]]n auftreten. Dies führt zu folgender Forderung
+
Weil das Seil ideal weich bezüglich [[Biegung]] ist, kann es keinen [[Drehimpuls]] transportieren. Folglich dürfen keine [[Drehimpulsquelle]]n auftreten. Die Forderung nach [[Quelle]]nfreiheit führt zu einer zusätzlichen Forderung
   
 
:<math>dy I_{px} - dx I_{py} = 0</math>
 
:<math>dy I_{px} - dx I_{py} = 0</math>
Zeile 50: Zeile 50:
 
oder
 
oder
   
:<math>\frac {I_{py}}{I_{py}} = \frac {dy}{dx}</math>
+
:<math>\frac {I_{py}}{I_{px}} = \frac {dy}{dx} = y^'</math>
  +
  +
Löst man nach der ''y''-Komponente auf und leitet nochmals nach ''x'' ab, erhält man nach dem Einsetzen ebenfalls die Gleichung für die Kettenlinie
  +
  +
:<math>y^{''} = -\frac { \mu g }{I_{px}}\sqrt{1 + (y^')^2} </math>
  +
  +
Das Minuszeichen hat keine Bedeutung, da die Stromstärke des ''x''-Impulses auch negativ ist.
   
 
==Lösung==
 
==Lösung==

Version vom 1. Juni 2007, 11:57 Uhr

Eine Kette, die an den Enden befestigt wird und dazwischen herunterhängt, nimmt eine bestimmte Form an. Diese sogenannte Kettenlinie, die eigentlich den Verlauf eines ideal biegsamen, linienförmigen Seils beschreibt, hängt von der Lage der Aufhängepunkte und der Länge der Kette ab, nicht jedoch von ihrer Masse pro Längeneinheit (μ).

Das Problem der Kettenlinie wurde von Gottfried Wilhelm Leibnitz, Christiaan Huygens und Johann Bernoulli im Jahr 1690 gelöst. Diese Lösung enthielt allerdings keine Herleitung. Johann Bernoulli wird erst in seinen Lektionen für L'Hospital expliziter. Galileo Galiei, der sich schon früher mit diesem Problem beschäftig hat, glaubte, dass die Kettenlinie eine Parabel sei. Eine Parabel ergibt sich aber nur dann, wenn die Masse der Kette proportional zur Horizontaldistanz ist.

klassische Herleitung

Schnittbild eines Kettengliedes

In der technischen Mechanik geht man Probleme dieser Art nach einem standardisierten Verfahren an

  • Freischneiden
  • Gleichgewichtsbedingungen formulieren
  • zusätzliche Annahmen und Gesetze beifügen

Das Schnittbild ist der nebenstehenden Skizze zu entnehmen. Die Bedingungen für das Gleichgewicht lauten

x-Richtung: [math]{-}F_{1x} + F_{2x} = 0[/math]
y-Richtung: [math]{-}F_{1y} + F_{2y} - F_G = 0[/math]

Die Gewichtskraft ist gleich Masse pro Länge mal Länge des Seilabschnittes mal Gravitationsfeldstärke

[math]F_G = \mu ds g [/math]

Nun führen wird für die Vertikalkomponente der Kräfte eine laufende Kraftvariable Fv(x) ein und verwenden für die konstant bleibende Horizontalkomponente den Parameter Fh. Damit wird die Gleichgewichtsbedingung in y-Richtung zu

[math]dF_v = \mu g ds = \mu g \sqrt{dx^2 + dy^2} = \mu g dx \sqrt{1 + \frac {dy^2} {dx^2}}[/math]

oder nach einer Division mit dx und der üblichen Bezeichnung für die Ableitung nach einer Ortsvariablen

[math]\frac {dF_v}{dx} = F_v^' = \mu g \sqrt{1 + (y^')^2}[/math]

Weil das Seil oder die Kette ideal biegsam ist, muss die Kraft auf einen beliebigen Querschnitt immer normal zur Schnittebene stehen. Dies führt zu folgender Zusatzbedingung

[math]\frac {F_v}{F_h} = \frac {dy}{dx} = y^'[/math]

Leitet man diese Bedingung noch einmal nach der Ortsvariable x ab, folgt daraus nach dem Einsetzen in die y-Gleichgewichtsbedingung die Differentialgleichung für die Kettenlinie

[math]y^{''} = \frac { \mu g }{F_h}\sqrt{1 + (y^')^2} [/math]

systemdynamische Herleitung

Durch das ideale Seil fliesst ein konstanter x-Impulsstrom gegen die x-Achse (Ipx < 0). Zusätzlich fliesst der y-Impuls von beiden Befestungsstellen ins Seil hinein und geht entsprechend der Massenbelegung ans Gravitationsfeld weg. Für die Änderung der Stromstärke des y-Impulsstroms längs des Seils gilt

[math]dI_{py} = -\mu g ds = -\mu g \sqrt{dx^2 + dy^2}[/math]

oder nach der gleichen Umformung wie oben

[math]I_{py}^' = -\mu g \sqrt{1 + (y')^2}[/math]

Weil das Seil ideal weich bezüglich Biegung ist, kann es keinen Drehimpuls transportieren. Folglich dürfen keine Drehimpulsquellen auftreten. Die Forderung nach Quellenfreiheit führt zu einer zusätzlichen Forderung

[math]dy I_{px} - dx I_{py} = 0[/math]

oder

[math]\frac {I_{py}}{I_{px}} = \frac {dy}{dx} = y^'[/math]

Löst man nach der y-Komponente auf und leitet nochmals nach x ab, erhält man nach dem Einsetzen ebenfalls die Gleichung für die Kettenlinie

[math]y^{''} = -\frac { \mu g }{I_{px}}\sqrt{1 + (y^')^2} [/math]

Das Minuszeichen hat keine Bedeutung, da die Stromstärke des x-Impulses auch negativ ist.

Lösung