Lösung zu Auskühlender Kessel: Unterschied zwischen den Versionen
Inhalt hinzugefügt Inhalt gelöscht
KKeine Bearbeitungszusammenfassung |
Admin (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
(5 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
#Der Wärmedurchgangskoeffizient entspricht dem Wärmeleitwert pro Fläche. Multipliziert man den gegebenen Wärmedurchgangskoeffizienten mit der Mantelfläche des Kessels, ergibt sich ein Wärmeleitwert von 9 kW/K. Folglich fliesst bei einer Temperaturdifferenz von |
#Der Wärmedurchgangskoeffizient entspricht dem Wärmeleitwert pro Fläche. Multipliziert man den gegebenen Wärmedurchgangskoeffizienten mit der Mantelfläche des Kessels von 2 * π * 4 m * 8 m = 201 m<sup>2</sup>, ergibt sich ein Wärmeleitwert von 45 W/m<sup>2</sup>/K * 201 m<sup>2</sup> = 9.05 kW/K. Folglich fliesst bei einer Temperaturdifferenz von 75°C - 30°C = 45 K ein thermischer Energiestrom der Stärke 9.05 kW/K * 45 K = 407 kW aus dem Kessel. |
||
#Der [[zugeordneter Energiestrom|zugeordnete Energiestrom]] bleibt längs des Transportweges erhalten. Deshalb nimmt die Stärke des Entropiestomes zu. Die Entropie-Produktionsrate ist gleich der Differenz der beiden Entropieströme, die bei verschiedenen Temperaturen den gleichen Energiestrom transportieren <math>\Pi_S = I_{S2} - I_{S1} = I_W \left(\frac {1}{T_2} - \frac {1}{T_1}\right) = \frac {I_W |
#Der [[zugeordneter Energiestrom|zugeordnete Energiestrom]] bleibt längs des Transportweges erhalten. Deshalb nimmt die Stärke des Entropiestomes zu. Die Entropie-Produktionsrate ist gleich der Differenz der beiden Entropieströme, die bei verschiedenen Temperaturen den gleichen Energiestrom transportieren <math>\Pi_S = I_{S2} - I_{S1} = I_W \left(\frac {1}{T_2} - \frac {1}{T_1}\right) = \frac {I_W (T_1 - T_2)}{T_1 T_2}</math> = 407 kW * (348 K - 303 K) / (348 K * 303 K) = 174 W/K. |
||
#Die Zeitkonstante ist gleich <math>\tau = RC = \frac {mc}{G_W}</math> = 1.86 10<sup>5</sup> s. Löst man die Funktion für den Entladevorgang des RC-Gliedes <math>\Delta T = \Delta T_a e^{-t/\tau}</math> nach der gesuchten Zeit auf, erhält man <math>t = \tau \ln \frac {\Delta T}{\Delta T_a}</math> = 1.51 10<sup>5</sup> s. |
#Die Masse des abkühlenden Wassers beträgt 1000 kg/m<sup>3</sup> * π * (4 m)<sup>2</sup> * 8 m = 402 t. Die Zeitkonstante ist gleich <math>\tau = RC = \frac {mc}{G_W}</math> = 402 t * 4.19 kJ/kg/K / 9.05 kW/K = 1.86 10<sup>5</sup> s. Löst man die Funktion für den Entladevorgang des RC-Gliedes <math>\Delta T = \Delta T_a e^{-t/\tau}</math> nach der gesuchten Zeit auf, erhält man <math>t = - \tau \ln \frac {\Delta T}{\Delta T_a}</math> = - 1.86 10<sup>5</sup> s * ln(20 K / 45 K) = 1.51 10<sup>5</sup> s = 41.9 h. |
||
#Der Nettostrahlung beträgt <math>I_W = \sigma A \left(T^4 - T_U^4\right)</math> = 71.1 kW. Befände sich der Kessel in einem evakuierten Raum, würde er die Wärme mindestens sechs Mal langsamer abgeben. |
#Der Nettostrahlung beträgt <math>I_W = \sigma A \left(T^4 - T_U^4\right)</math> = 5.67 10<sup>-8</sup> W/(m<sup>2</sup>K<sup>4</sup>) * 201 m<sup>2</sup> * ((348 K)<sup>4</sup> - (303 K)<sup>4</sup>) = 71.1 kW. Befände sich der Kessel in einem evakuierten Raum, würde er die Wärme mindestens sechs Mal langsamer abgeben. |
||
[[Auskühlender Kessel|Aufgabe]] |
[[Auskühlender Kessel|Aufgabe]] |
Aktuelle Version vom 4. Mai 2010, 05:41 Uhr
- Der Wärmedurchgangskoeffizient entspricht dem Wärmeleitwert pro Fläche. Multipliziert man den gegebenen Wärmedurchgangskoeffizienten mit der Mantelfläche des Kessels von 2 * π * 4 m * 8 m = 201 m2, ergibt sich ein Wärmeleitwert von 45 W/m2/K * 201 m2 = 9.05 kW/K. Folglich fliesst bei einer Temperaturdifferenz von 75°C - 30°C = 45 K ein thermischer Energiestrom der Stärke 9.05 kW/K * 45 K = 407 kW aus dem Kessel.
- Der zugeordnete Energiestrom bleibt längs des Transportweges erhalten. Deshalb nimmt die Stärke des Entropiestomes zu. Die Entropie-Produktionsrate ist gleich der Differenz der beiden Entropieströme, die bei verschiedenen Temperaturen den gleichen Energiestrom transportieren [math]\Pi_S = I_{S2} - I_{S1} = I_W \left(\frac {1}{T_2} - \frac {1}{T_1}\right) = \frac {I_W (T_1 - T_2)}{T_1 T_2}[/math] = 407 kW * (348 K - 303 K) / (348 K * 303 K) = 174 W/K.
- Die Masse des abkühlenden Wassers beträgt 1000 kg/m3 * π * (4 m)2 * 8 m = 402 t. Die Zeitkonstante ist gleich [math]\tau = RC = \frac {mc}{G_W}[/math] = 402 t * 4.19 kJ/kg/K / 9.05 kW/K = 1.86 105 s. Löst man die Funktion für den Entladevorgang des RC-Gliedes [math]\Delta T = \Delta T_a e^{-t/\tau}[/math] nach der gesuchten Zeit auf, erhält man [math]t = - \tau \ln \frac {\Delta T}{\Delta T_a}[/math] = - 1.86 105 s * ln(20 K / 45 K) = 1.51 105 s = 41.9 h.
- Der Nettostrahlung beträgt [math]I_W = \sigma A \left(T^4 - T_U^4\right)[/math] = 5.67 10-8 W/(m2K4) * 201 m2 * ((348 K)4 - (303 K)4) = 71.1 kW. Befände sich der Kessel in einem evakuierten Raum, würde er die Wärme mindestens sechs Mal langsamer abgeben.