Lösung zu Hofzfloss

Aus SystemPhysik
Version vom 3. Januar 2016, 19:25 Uhr von Admin (Diskussion | Beiträge) (→‎Frage 2)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Frage 1

Auf das Floss wirken eine Gewichtskraft nach unten und eine Auftriebskraft nach oben ein. Im Gleichgewicht sind beide Kräfte betragsmässig gleich gross

[math]F_G = F_A[/math]

Die Gewichtskraft ist gleich Masse mal Gravitationsfeldstärke und die Auftriebskraft gleich Volumen des eingetauchten Körpers mal Dichte des Wassers mal Gravitationsfeldstärke

[math]mg = V_{Wasser}\varrho_{Wasser}g[/math]

Die Graviationsfeldstärke kürzt sich weg und die Masse des Holzes kann durch Volumen mal Dichte ersezt werden

[math]V_{Holz}\varrho_{Holz} = V_{Wasser}\varrho_{Wasser}[/math]

Nun ersetzt man das Volumen durch Querschnitt (A) mal Höhe

[math]Ah_{Holz}\varrho_{Holz} = Ah_{Wasser}\varrho_{Wasser}[/math]

Die Querschnittfläche kürzt sich weg. Es bleibt die Aussage, wonach das Produkt aus Dichte mal Höhe für beide Teile gleich gross ist

[math]h_{Holz}\varrho_{Holz} = h_{Wasser}\varrho_{Wasser}[/math]

Für die Dichte des Holzes gilt deshalb

[math]\varrho_{Holz} = \frac{h_{Wasser}}{h_{Holz}}\varrho_{Wasser}[/math] = 600 kg/m3

Frage 2

Sobald jemand das Floss betritt, taucht es weiter ein, weil der Zuwachs an Gewicht durch einen Zuwachs an Auftrieb kompensiert werden muss, gilt

[math]\Delta F_G = \Delta F_A[/math]
[math]\Delta mg = \Delta V_{Wasser}\varrho_{Wasser}g[/math]
[math]\Delta m = A\Delta h_{Wasser}\varrho_{Wasser}[/math] = 25 m2 x 0.3 m x 1000 kg/m3 = 7500 kg.

Das Floss trägt somit 100 Personen.

Aufgabe