Lösung zu Schwungradspeicher

The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
  1. Die Winkelgeschwindigkeit beträgt: ω = 2 * π * 25'000 U/min / (60 s / min) = 2 * π * 417 1/s = 2620 rad/s. Der Drehimpuls ist gleich Energie durch halbe Endwinkelgeschwindigkeit, also L = W / (ω / 2) = 6 kWh / (2620 rad/s / 2) = 16.5 kNms. Dank der hohen Drehzahl benötigt dieses Schwungrad bei etwa gleichem Energie-Speichervermögen viel weniger Drehimpuls als der Gyrobus.
  2. Das Massenträgheitsmoment, die Drehimpulskapazität (Grundfläche im Flüssigkeitsbild), ist gleich Drehimpuls durch Winkelgeschwindigkeit, also J = L / ω = 16.5 kNms / 2620 rad/s = 6.30 kgm2.
  3. Oft ist die Haftreibungskraft FH = μH * m * g zwischen Fahrzeug und Strasse der Hauptbeitrag zur resultierenden Kraft FRes = m * a auf dieses. Deshalb darf auf horizontaler Strasse die Beschleunigung nicht grösser als 60% von g sein: m * a = μH * m * g ≤ μH,max * m * g, also a ≤ 0.6 * g ≈ 6 m/s2. Für die Maximalgeschwindigkeit auf der Kreisbahn gilt [math]v = \sqrt{ar}[/math]. Die zulässige Geschwindigkeit wächst mit der Wurzel aus dem Kurvenradius: 12.2 m/s (44 km/h) bei 25 m Kurvenradius, 24.5 m/s (88 km/h) bei 100 m und 34.6 (125 km/h) bei 200 m.
  4. Das Auto dreht sich mit einer Winkelgeschwindigkeit von [math]\omega_S = \frac {v}{r} = \frac{\sqrt{a r}}{r} = \sqrt{\frac{a}{r}}[/math]. Das auf das Schwungrad ausgeübte Drehmoment ist gleich [math]M = \omega_S L = \sqrt{\frac{a}{r}}L[/math]S und L stehen senkrecht aufeinander), was bei einem Kurvenradius von 200 m einen Wert von 2.86 kNm ergibt. Bei einem Radius von 100 m steigt das maximale Drehmoment auf 4.03 kNm an und bei einem Radius von 25 m beträgt das maximal möglich Drehmoment 8.1 kNm. Da könnte sportliches Einparken zum Problem werden.

Aufgabe