Raumzeit: Unterschied zwischen den Versionen

Zeile 3: Zeile 3:
 
== Raumzeit in der speziellen Relativitätstheorie ==
 
== Raumzeit in der speziellen Relativitätstheorie ==
 
=== Motivation ===
 
=== Motivation ===
Die Gesetze der Newtonschen [[Punktmechanik]] gelten in allen [[Inertialsystem]]en, weil das Grundgesetz der [[Translationsmechanik]] nur einen Bezug zwischen den [[Impulsstrom]]stärken oder [[Impulsquelle]]nstärken, den [[Kraft|Kräften]], und der Beschleunigung des Körpers herstellt. In der Beschreibung des [[elektromagnetisches Feld|elektromagnetischen Feldes]], den [[Maxwell-Gleichungen]], taucht nun aber die Lichtgeschwindigkeit ''c'' als Naturkonstante auf. Sollen die Gesetze der [[Elektrodynamik]] in allen Intertialsystemen gültig sein, muss sich das Licht für alle [[Beobachter]] in den verschiedenen Inertialsystemen gleich schnell fortpflanzen.
+
Die Gesetze der Newtonschen [[Punktmechanik]] gelten in allen [[Inertialsystem]]en, weil im Grundgesetz der [[Translationsmechanik]], das den Bezug zwischen den [[Kraft|Kräften]] (Stärken der [[Impulsstrom|Impulsströme]] oder [[Impulsquelle]]n) und der Beschleunigung des Körpers herstellt, die [[Geschwindigkeit]] nicht in Erscheinung tritt. In den [[Maxwell-Gleichungen]], welche den Zusammenhang zwischen [[elektrische Ladung|elektrischer Ladung]] (Dichte und Stromdichte) und dem [[elektromagnetisches Feld|elektromagnetischen Feld]] beschreibt, taucht nun aber eine Geschwindigkeit, die des Lichtes, ''c'' genannt, als Naturkonstante auf. Somit gelten die Gesetze der [[Elektrodynamik]] nur dann in allen Intertialsystemen, wenn die Lichtgeschwindigkeit für jeden beliebigen [[Beobachter]] in einem dieser Systeme gleich ''c'' ist: die Lichtgeschwindigkeit muss in jedem Inertialsystem gleich gross, damit die Gesetze der Elektrodynamik in all diesen Systemen gültig sind.
   
Bewegt sich ein Lichtpuls in Richtung der ''x''-Koordinate, gilt für die Strecke zwischen zwei Punkten sowie die Zeitpunkte, zu denen der Lichtblitz dort vorbeiflizt, der folgende Zusammenhang
+
Die Forderung nach der Beobachterunabhängigkeit der Lichtgeschwindigkeit bestimmt die Geometrie der Raumzeit. Bewegt sich ein Lichtpuls in Richtung der ''x''-Koordinate, gilt für die Strecke zwischen zwei Punkten sowie für die Zeitpunkte, zu denen der Lichtblitz dort vorbei flitzt, der folgende Zusammenhang
   
 
:<math>c = \frac {x_2 - x_1}{t_2 - t_1} = \frac {\Delta x}{\Delta t}</math>
 
:<math>c = \frac {x_2 - x_1}{t_2 - t_1} = \frac {\Delta x}{\Delta t}</math>
Zeile 13: Zeile 13:
 
:<math>c = \frac {dx}{dt}</math>
 
:<math>c = \frac {dx}{dt}</math>
   
Damit die Lichtgeschwindigkeit in der Raumzeit von jedem Beobachter gleich schnell ist, muss somit folgende Bedingung gelten
+
Damit die Lichtgeschwindigkeit in der Raumzeit für jeden Beobachter gleich schnell ist, muss somit folgende Bedingung gelten
   
 
:<math>cdt - dx = 0</math>
 
:<math>cdt - dx = 0</math>
   
Diese Bedingung ist bezüglich des Vorzeichens nicht eindeutig und lässt sich so nicht auf alle drei Dimensionen des Raumes ausdehnen. Folglich darf man nur verlangen, dass das Quadrat der Lichtgeschwindigkeit für alle Beobachter auf den verschiedenen Inertialsystemen gleich gross ist, was zu folgender Bedingung führt
+
Diese Bedingung ist bezüglich des Vorzeichens nicht eindeutig und lässt sich so auch nicht auf alle drei Dimensionen des Raumes ausdehnen. Verlangt man etwas weniger einschränkend, dass das Quadrat der Lichtgeschwindigkeit für jeden Beobachter auf einem beliebigen Inertialsystemen gleich gross ist, erhält man die folgender Bedingung
   
 
:<math>c^2dt^2 - dx^2 - dy^2 - dz^2 = c^2dt^2 - ds^2 = 0</math>
 
:<math>c^2dt^2 - dx^2 - dy^2 - dz^2 = c^2dt^2 - ds^2 = 0</math>
  +
  +
Diese Bedingung legt fest, dass die Grösse
  +
  +
::<math>c^2d\tau^2 = c^2dt^2 - dx^2 - dy^2 - dz^2</math>
  +
  +
von jedem Inertialsystem aus gleich gross ist.
   
 
=== Metrik ===
 
=== Metrik ===

Version vom 28. Juli 2007, 15:58 Uhr

In der Relativitätstheorie werden Raum und Zeit zur vierdimensionalen Raumzeit vereinigt. Ein Raum-Zeit-Punkt heisst dann Ereignis. Das Skalarprodukt wird auf die Zeit ausgedehnt, womit der Abstandsbegriff eine neue Bedeutung bekommt. Die räumliche Drehung wird auf zur Lorentz-Transformation erweitert. Die Verteilung der Energie (Masse) und des Impulses beeinflussen die Geometrie der Raumzeit, d.h. der Energie-Impuls-Tensor bestimmt die Krümmung der Raumzeit.

Raumzeit in der speziellen Relativitätstheorie

Motivation

Die Gesetze der Newtonschen Punktmechanik gelten in allen Inertialsystemen, weil im Grundgesetz der Translationsmechanik, das den Bezug zwischen den Kräften (Stärken der Impulsströme oder Impulsquellen) und der Beschleunigung des Körpers herstellt, die Geschwindigkeit nicht in Erscheinung tritt. In den Maxwell-Gleichungen, welche den Zusammenhang zwischen elektrischer Ladung (Dichte und Stromdichte) und dem elektromagnetischen Feld beschreibt, taucht nun aber eine Geschwindigkeit, die des Lichtes, c genannt, als Naturkonstante auf. Somit gelten die Gesetze der Elektrodynamik nur dann in allen Intertialsystemen, wenn die Lichtgeschwindigkeit für jeden beliebigen Beobachter in einem dieser Systeme gleich c ist: die Lichtgeschwindigkeit muss in jedem Inertialsystem gleich gross, damit die Gesetze der Elektrodynamik in all diesen Systemen gültig sind.

Die Forderung nach der Beobachterunabhängigkeit der Lichtgeschwindigkeit bestimmt die Geometrie der Raumzeit. Bewegt sich ein Lichtpuls in Richtung der x-Koordinate, gilt für die Strecke zwischen zwei Punkten sowie für die Zeitpunkte, zu denen der Lichtblitz dort vorbei flitzt, der folgende Zusammenhang

[math]c = \frac {x_2 - x_1}{t_2 - t_1} = \frac {\Delta x}{\Delta t}[/math]

oder für unmittelbar benachbarte Punkte

[math]c = \frac {dx}{dt}[/math]

Damit die Lichtgeschwindigkeit in der Raumzeit für jeden Beobachter gleich schnell ist, muss somit folgende Bedingung gelten

[math]cdt - dx = 0[/math]

Diese Bedingung ist bezüglich des Vorzeichens nicht eindeutig und lässt sich so auch nicht auf alle drei Dimensionen des Raumes ausdehnen. Verlangt man etwas weniger einschränkend, dass das Quadrat der Lichtgeschwindigkeit für jeden Beobachter auf einem beliebigen Inertialsystemen gleich gross ist, erhält man die folgender Bedingung

[math]c^2dt^2 - dx^2 - dy^2 - dz^2 = c^2dt^2 - ds^2 = 0[/math]

Diese Bedingung legt fest, dass die Grösse

[math]c^2d\tau^2 = c^2dt^2 - dx^2 - dy^2 - dz^2[/math]

von jedem Inertialsystem aus gleich gross ist.

Metrik

Nimmt man die Zeit als nullte oder vierte Komponente des Raumes, sollte man sie auch als Länge messen. Wir führen deshalb eine neue Zeitkoordinate T = ct ein, welche in Metern gemessen wird. Damit wird auch klar, wieso man mit der Raumzeit seine liebe Mühe hat. Im Raum können wir eine Distanz von 0.3 Millimeter (0.0003 m) problemlos erkennen. Unser zeitliches Auflösungsvermögen liegt aber bei etwa 0.1 s, was einer zeitlichen Distanz von 30'000'000 m entspricht. Damit liegt das Verhältnis von räumlichem zum zeitlichen Auflösungsvermögen beim Menschen etwa bei eins zu hundert Milliarden.

In der Raumzeit gilt nun in Erweiterung des Skalarproduktes des Euklidschen Geometrie die folgende Vorschrift zur Berechnung einer Länge zwischen den Ereignissen (T1, x1, y1, z1)

Minkowski-Diagramm

Im Minkowski-Diagramm können die Verhältnisse geometrisch dargestellt und analysiert werden. Wegen der komplexen Eigenschaft der Zeitkomponente wird dort die Drehung der Zeitachse mit umgekehrtem Vorzeichen wie die Drehung der Koordinatenachse dargestellt.

Raumzeit in der allgemeinen Relativitätstheorie

Nichteuklidische Geometrien

Grundlage zur Beschreibung der Raumzeit (ct,x,y,z) in der allgemeinen Relativitätstheorie ist die Riemannsche Geometrie. Die Koordinatenachsen sind hier nichtlinear, was als Raumkrümmung interpretiert werden kann. Für die vierdimensionale Raumzeit werden die gleichen mathematischen Hilfsmittel wie zur Beschreibung einer zweidimensionalen Kugeloberfläche oder für Sattelflächen herangezogen. Als unumstößlich angesehene Aussagen der euklidischen Geometrie, insbesondere das Parallelenaxiom, müssen in diesen Theorien aufgegeben und durch allgemeinere Beziehungen ersetzt werden. Die kürzeste Verbindung zwischen zwei Punkten ist hier beispielsweise kein Geradenteilstück mehr. Einer Geraden in der euklidischen Geometrie entspricht die Geodäte in der nicht-euklidischen Welt; im Falle einer Kugeloberfäche sind die Geodäten die Großkreise. Die Winkelsumme im - aus Geodätenabschnitten bestehenden - Dreieck ist auch nicht mehr 180 Grad. Im Falle der Kugeloberfläche ist sie größer als 180 Grad, im Falle von Sattelflächen dagegen kleiner.

Raumzeit-Krümmung

Die Krümmung von Raum und Zeit wird durch Masse, Strahlung und Druck verursacht; diese Größen bilden zusammen den Energie-Impuls-Tensor und gehen in die Einsteingleichungen als Quelle des Gravitationsfeldes ein. Die daraus resultierende krummlinige Bewegung von kräftefreien Körpern entlang der Geodäten wird der Gravitationsbeschleunigung zugeschrieben; in diesem Modell existiert so etwas wie eine Gravitationskraft nicht mehr. In einem infinitesimalen Raumabschnitt (lokale Karte) besitzt das erzeugte Gravitationsfeld stets die flache Metrik der speziellen Relativitätstheorie. Dies wird durch eine konstante Raumkrümmung mit dem Faktor g/c2 beschrieben. Die Krümmung der Weltlinien (Bewegungskurven in der Raumzeit) aller kräftefreien Körper in diesem Raumabschnitt ist gleich.

In vielen populären Darstellungen der allgemeinen Relativitätstheorie wird häufig nicht beachtet, dass nicht nur der Raum, sondern auch die Zeit gekrümmt sein muss, um ein Gravitationsfeld zu erzeugen. Dass stets Raum und Zeit gekrümmt sein müssen, ist anschaulich leicht zu verstehen: Wäre nur der Raum gekrümmt, so wäre die Trajektorie eines geworfenen Steines immer dieselbe, egal welche Anfangsgeschwindigkeit der Stein besäße, da er stets nur dem gekrümmten Raum folgen würde. Nur durch die zusätzliche Krümmung der Zeit können die verschiedenen Trajektorien zustande kommen. Im Rahmen der ART kann dies auch mathematisch gezeigt werden.

Im normalen, dreidimensionalen Raum ist nur die Projektion der Weltlinien auf die Bewegungsebene sichtbar. Hat der Körper die Geschwindigkeit v, so ist die Weltlinie gegenüber der Zeitachse geneigt, und zwar um den Winkel [math]\tan \alpha=v/c[/math]. Die Projektion der Bahn wird mit steigendem v um den Faktor [math]1/\sin \alpha[/math] länger, der Krümmungsradius um den gleichen Faktor [math]1/\sin \alpha[/math] größer, die Winkeländerung also kleiner. Die Krümmung (Winkeländerung pro Längenabschnitt) ist daher um den Faktor [math]sin^2\alpha[/math] kleiner.

Mit

[math]\sin \alpha=\frac{v}{c}\frac{1}{\sqrt{1 + \frac{v^2}{c^2}}}[/math]

folgt dann aus der Weltlinienkrümmung g/c2 für die beobachtete Bahnkrümmung [math]R[/math] im dreidimensionalen Raum

[math]R=\frac{g}{v^2} \cdot \left(1 + \frac{v^2}{c^2} \right)[/math].

Symmetrien

Die Raumzeit ist charakterisiert durch eine Anzahl von Symmetrien, die sehr wichtig für die darin geltende Physik sind. Zu diesen Symmetrien zählen neben den Symmetrien des Raumes (Translation, Rotation) auch die Symmetrien unter Lorentztransformationen (Wechsel zwischen Bezugssystemen verschiedener Geschwindigkeit). Letzteres stellt das Relativitätsprinzip sicher.

Weblinks